М.И.БАРАНОВ, докт. техн. наук, главн. науч. сотр., НТУ «ХПИ»; *Г.М.КОЛИУШКО*, канд. техн. наук, зам. директора ин-та, НТУ «ХПИ»

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ДЛИННЫХ ВОЗДУШНЫХ ПРОМЕЖУТКОВ В ЭЛЕКТРОДНОЙ СИСТЕМЕ «СТЕРЖЕНЬ–СТЕРЖЕНЬ» ДЛЯ МИКРОСЕКУНДНЫХ ИМПУЛЬСОВ НАПРЯЖЕНИЯ

Надані результати експериментальних досліджень щодо електричного пробою повітряних проміжків завдовжки до 3 метрів в електродній системі «стрижень–стрижень» за дії на неї мегавольтних імпульсів напруги мікросекундного часового діапазону.

Results of experimental studies on the electric discharge of air intervals of up to 3 meters long in the electrode system «bar-bar» subjected to megavoltage impulses of the microsecond temporal range are given.

Предоставлены результаты экспериментальных исследований по электрическому пробою воздушных промежутков длиной до 3 метров в электродной системе «стержень-стержень» при действии на нее мегавольтных импульсов напряжения микросекундного временного диапазона.

Введение

В области высоковольтной импульсной техники (ВИТ) при создании генераторов импульсных напряжений (токов) высокого и сверхвысокого электрических потенциалов и проведении испытаний различных технических объектов на электромагнитную совместимость и стойкость требуются данные. касающиеся электрической прочности длинномерной твердой, жидкой и газовой изоляции [1,2]. При этом указанные электрофизические данные должны быть привязаны к соответствующим временным параметрам воздействующих на изоляцию импульсов напряжения и тока. В настоящее время традиционными для ВИТ временными диапазонами изменения испытательных импульсов напряжения (тока) являются нано-, микро- и миллисекундные диапазоны. В НИПКИ «Молния» НТУ «ХПИ» на его экспериментально-исследовательском полигоне активно используется высоковольтное оборудование наружной установки, работающее в режиме воздействия на его изоляцию микросекундных импульсов сверхвысокого напряжения [3]. Поэтому как для данного высоковольтного испытательного электрооборудования, так и других существующих и вновь разрабатываемых устройств ВИТ на сегодня не потеряли своей актуальности результаты экспериментальных исследований электрической прочности длинных воздушных промежутков (длиной до 10 м) в условиях приложения к ним микросекундных импульсов напряжения мегавольтного уровня.

1. Выбор электроустановки для проведения экспериментальных исследований электрической прочности длинных воздушных промежутков

Для выполнения работ по определению опытным путем электрической прочности длинномерной воздушной изоляции нами был выбран генератор импульсных напряжений и токов типа ГИНТ-4/1 (рис. 1) на номинальное выходное напряжение 4 МВ и запасаемую электрическую энергию до 1 МДж [4,5]. Данный генератор этажерочного типа, содержащий 16 каскадов с двухэлектродными воздушными шаровыми разрядниками Ø 125 мм, при двухполярном зарядном напряжении U_3 своих 128 конденсаторов типа КБМГ-125/1 (напряжение – 125 кВ; емкость – 1 мкФ) характеризуется следующими собственными электрическими параметрами [4,5]: емкостью «в разряде» $C_{\Gamma} = 0,125$ мкФ; индуктивностью $L_{\Gamma} = 80$ мкГн; активным сопротивлением $R_{\Gamma} = 4,5$ Ом.

Рисунок 1 – Внешний вид мегавольтного генератора ГИНТ-4/1, размещенного на испытательном полигоне института, и двухэлектродной системы «стержень–стержень» при испытаниях электрической прочности длинных воздушных промежутков

При использовании для рассматриваемых высоковольтных испытаний генератора ГИНТ-4/1 принципиальная электрическая схема испытательной электроустановки примет вид, приведенный на рис. 2. В данной схеме для измерения на исследуемых воздушных промежутках импульсного напряжения был применен омический делитель напряжения типа ОДН-2 общей высотой 12,6 м, содержащий в составе высоковольтного плеча девять последовательно соединенных секций, каждая из которых была изготовлена на основе двух параллельных *R*-цепочек с применением 20 шт. керамических резисторов типа ТВО-10-2,4 кОм. При 180 шт. использованных резисторов указанного номинала общее активное сопротивление высоковольтного плеча данного делителя составило 107.3 кОм. Низковольтное плечо делителя ОДН-2 было выполнено из резисторов типа ТВО-2-2 Ом с общим активным сопротивлением 4 Ом. С учетом выбранных сопротивлений в высоковольтном и низковольтном плечах делителя ОДН-2 масштабный коэффициент нашего средства измерения (при коэффициенте деления ОДН-2, равном $K_{II} = 107300/4 = 26825$) составил величину, численно равную К_М=2К_Л=53650. При регистрации амплитудновременных параметров (АВП) импульсного тока в разрядной цепи генератора ГИНТ-4/1 в качестве рабочего измерительного средства нами был использован коаксиальный шунт типа ШК-300, прошедший метрологическую проверку и имеющий коэффициент преобразования, численно равный К_Ш = 11261 A/B [6].

Рисунок 2 – Принципиальная схема испытаний электрической прочности длинных воздушных промежутков в разрядной цепи генератора ГИНТ-4/1 (*F*₁ – отсекающий воздушный разрядник генератора; РВП – рабочий воздушный промежуток двухэлектродной системы «стержень–стержень»; ОДН-2 – омический делитель напряжения на 2 МВ; ШК-300 – измерительный коаксиальный шунт на 300 кА; ЦО – цифровой осциллограф)

Отметим, что при регистрации АВП микросекундных импульсов напряжения амплитудой до 2 МВ и тока амплитудой до 100 кА в разрядной цепп генератора ГИНТ-4/1 с испытываемыми воздушными промежутками длиной l_{Π} до 3 м были применены два поверенных запоминающих цифровых осциллографа типа Tektronix TDS 1012, размещенных в заглубленном экранированном измерительном бункере и соединенных с делителем ОДН-2 и шунтом ШК-300 экранированными кабельными линиями передачи сигнала длиной около 60 м.

2 Выбор и описание конструкции двухэлектродной системы с длинным воздушным промежутком

В проводимых экспериментах на высоковольтной испытательной электроустановке ГИНТ-4/1 авторы остановились на двухэлектродной системе «стержень–стержень», нашедшей широкое применение в области ВИТ. Электроды исследуемого воздушного промежутка длиной l_{II} представляли собой круглые стальные цилиндры Ø 20 мм при длине верхнего электрода 1 м (рис. 3) и нижнего (рис. 4) – 0,4 м. Верхний электрод рассматриваемой воздушной двухэлектродной системы «стержень–стержень» фиксировался на высоте при помощи растянутого между изоляционными опорами электроустановки капронового каната Ø 15 мм (см. рис. 3), а ее нижний электрод закреплялся на чугунном фланце опорного фарфорового изолятора типа КО-400С (см. рис. 4).

Рисунок 3 – Внешний вид верхнего стержневого стального электрода Ø 20 мм и подсоединенного к нему гибкого стального токопровода делителя напряжения типа ОДН-2 при испытаниях электрической прочности длинных воздушных промежутков

Рабочие края указанных электродов системы «стержень-стержень», обращенные внутрь испытываемых воздушных промежутков, имели радиус закругления своих кромок, примерно равный 5 мм. Верхний электрод гибкими стальными токопроводами согласно схеме на рис. 2 подсоединялся к металлической крыше генератора ГИНТ-4/1 и делителю напряжения ОДН-2, а нижний электрод – соответственно к измерительному шунту ШК-300 и заземленной гибкой стальной шине. Выбранная конструкция двухэлектродной системы «стержень–стержень» позволяла с применением передвижной вышки сравнительно легко изменять длину l_{Π} ее воздушного промежутка, фиксируемую при помощи длинной деревянной измериткльной линейки с погрешностью до 10 %. В момент проведения рассматриваемых электрических испытаний в безветренную осеннюю погоду температура окружающего воздуха составляла 14 °C, а его относительная влажность приближалась к отметке 90 %.

Рисунок 4 — Внешний вид нижнего стержневого стального электрода Ø 20 мм и подсоединенных к нему измерительного шунта ШК-300 и заземленной гибкой стальной шины при испытаниях электрической прочности длинных воздушных промежутков

3 Результаты экспериментов по определению для микросекундных импульсов напряжения электрической прочности длинных воздушных промежутков в системе «стержень-стержень»

Испытания электрической прочности воздушной изоляции применительно к нашему случаю проводились в соответствии с требованиями действующих и поныне межгосударственного стандарта ГОСТ 1516.2-97 [7] и стандарта ГОСТ 17512-82 [8]. Измерение импульсного напряжения на рабочем воздушном промежутке (РВП) двухэлектродной системы «стержень-стержень» выполнялось с загрубленным применением согласно требований по [8] метода 50 %-ного разрядного напряжения. При этом при неизменном значении длины l_{II} РВП (для 1, 2 и 3 м) для генератора ГИНТ-4/1 осуществлялось изменение его зарядного напряжения U_3 в диапазоне ±(30-60) кВ, что обеспечивало изменение выходного напряжения U_B на указанном генераторе от +960 до +1920 кВ. В этом случае при ступечатом изменении величины выходного напряжения U_B генератора за 50 %-ное разрядное напряжение принималась та его величина, при которой в РВП возникало не менее четырех искровых разрядов из 10 приложенных от генератора ГИНТ-4/1 к воздушному промежутку микросекундных импульсов напряжения. Для указанных выше длин l_{Π} РВП измерение напряжения (тока) на воздушных промежутках начиналось с приложения к ним от генератора ГИНТ-4/1 поряд-ка пяти импульсов (по требованиям же ГОСТ 17512-82 не менее 10 импульсов), не вызывающих в РВП искровых разрядов.

На рис. 5 приведена типичная осциллограмма микросекундного импульса напряжения на РВП длиной $l_{\Pi} = 2$ м при электрическом пробое воздушного промежутка в разрядной цепи генератора ГИНТ-4/1. Из данных рис. 5 видно, что искровой разряд в данном РВП происходит на нарастающей части импульсного напряжения, приложенного к воздушному промежутку. При этом на РВП ($l_{\Pi} = 2$ м) напряжение среза составляет около $U_C = 22\text{Bx}53650 = 1180,3$ кВ при предразрядном времени примерно $T_C = 1,7$ мкс и длительности среза около $T_{DC} = 5,37$ мкс. Данные этой осциллограммы и других результатов испытаний для рассматриваемого РВП свидетельствуют о том, что в этом случае ($l_{\Pi} = 2$ м) 50 %-ное разрядное напряжение приближенно составляет не менее 1180 кВ, что при временах нарастания импульсного напряжения на воздушном промежутке системы «стержень–стержень» длиной 2 м в единицы микросекунд соответствует пробивному градиенту электрического поля около 590 кВ/м.

Рисунок 5 – Осциллограмма импульса напряжения на воздушном промежутке длиной 2 м, срезанного на его нарастающей части ($U_3 = \pm 60 \text{ kB}$; $U_B = 1920 \text{ kB}$; напряжение среза $U_C = 1180,3 \text{ kB}$; предразрядное время $T_C = 1,7 \text{ мкс}$; длительность среза $T_{DC} = 5,37 \text{ мкс}$; масштаб по вертикали – 5 В/клетка; масштаб по горизонтали – 2,5 мкс/клетка)

На рис. 6 для случая, соответствующего данным рис. 5, показана типичная осциллограмма импульсного тока при колебательном разряде конденсаторов генератора ГИНТ-4/1 на пробитый разрядный воздушный промежуток длиной $l_{II} = 2$ м в исследуемой системе «стержень–стержень». Из данных рис. 6 следует, что наибольшая амплитуда импульса разрядного тока на РВП составляет $I_{m1} = 6,72$ Вх11261 А/В = 75,7 кА. Этой токовой амплитуде соответствует время, равное $t_{m1} = 4,7$ мкс. Видно, что из-за искровых процессов в контактных подсоединениях измерительного шунта ШК-300 к нижнему электроду системы «стержень–стержень» на третьей и последующих полуволнах импульсного тока в разрядной цепи мегавольтного генератора ГИНТ-4/1 с пробитым РВП наблюдаются наложенные колебания, искажающие плавный ход кривой тока.

Рисунок 6 – Осциллограмма импульса тока в разрядной цепи генератора ГИНТ-4/1 при электрическом пробое воздушного промежутка длиной 2 м ($U_3 = \pm 60 \text{ kB}$; $U_B = 1920 \text{ kB}$; $I_{m1} = 75,7 \text{ kA}$; $t_{m1} = 4,7 \text{ мкс}$; период колебаний большого импульсного тока разряда $T_{\Gamma} = 21 \text{ мкс}$; масштаб по вертикали – 2 В/клетка; масштаб по горизонтали – 10 мкс/клетка)

На рис. 7 представлена типичная осциллограмма импульса напряжения микросекундной длительности на исследуемом РВП длиной $l_{\Pi} = 3$ м в случае электрического пробоя в системе «стержень–стержень» ее воздушного промежутка. Данная осциллограмма по сравнению с аналогичной осциллограммой, приведенной на рис. 5 для импульсного напряжения на РВП длиной $l_{\Pi} = 2$ м, отличается не только бо́льшей величиной напряжения среза ($U_C = 1341,3$ кВ), но и существенно возросшим для этого случая предразрядным временем $T_C = 12,5$ мкс >> 1,7 мкс. При этом длительность среза $T_{DC} = 5,47$ мкс близка к аналогичной временной характеристике для РВП дли-

ной $l_{II} = 2$ м, численно составляющей согласно данным рис. 5 значение около $T_{DC} = 5,37$ мкс. Выполненная оценка 50 %-ного разрядного напряжения для воздушного промежутка длиной 3 м в принятой системе «стержень–стержень», испытывающего воздействие от мегавольтного генератора ГИНТ-4/1 микросекундного импульса напряжения, показывает, что оно приближенно составляет не менее 1340 кВ. Поэтому пробивная усредненная напряженность электрического поля в рассматриваемой конструкции двухэлектродной системы «стержень–стержень» с воздушным промежутком длиной 3 м характеризуется уровнем, равным около 447 кВ/м.

Рисунок 7 – Осциллограмма импульса напряжения на воздушном промежутке длиной 3 м, срезанного на его нарастающей части ($U_3 = \pm 60$ кВ; $U_B = 1920$ кВ; напряжение среза $U_C = 1341,3$ кВ; предразрядное время $T_C=12,5$ мкс; длительность среза $T_{DC} = 5,47$ мкс; масштаб по вертикали – 5 В/клетка; масштаб по горизонтали – 2,5 мкс/клетка)

На рис. 8 приведена осциллограмма затухающего разрядного тока в цепи генератора ГИНТ-4/1 для случая электрического пробоя в выбранной системе «стержень–стержень» РВП длиной $l_{II} = 3$ м. Из нее видно, что увеличение длины воздушного промежутка с 2 до 3 м приводит к заметному уменьшению (затуханию) первой амплитуды колебательного импульса тока, примерно составляющей $I_{m1} = 62,2$ кА при $t_{m1} = 4,1$ мкс. Следует отметить то, что при этом длительность периода колебаний импульсного тока в разрядной цепи испытательной электроустановки практически сохраняет свои прежние значения, равные около $T_{I} = 21$ мкс. Связано это с внесением при пробое РВП сильноточным плазменным каналом воздушного искрового разряда дополнительного го активного сопротивления в разрядную цепь генератора ГИНТ-4/1 [9]. Данная токовая осциллограмма от аналогичной осциллограммы, показанной на

рис. 6, отличается практическим отсутсвием на кривой разрядного тока наложенных колебаний и соответственно видимых искажений. Заметим, что последние для токовой осциллограммы на рис. 8 были устранены чисто механическим путем благодаря лучшей затяжке болтовых соединений в сильноточной цепи подключения измерительного шунта ШК-300 к нижнему стальному электроду исследуемой двухэлектродной системы «стержень–стержень» с длинным воздушным промежутком (см. рис. 4). Отсюда вытекает простая практическая рекомендация для исследователей высоковольтных сильноточных разрядов: при регистрации АВП импульсов напряжения и тока в разрядных цепях испытательных электроустановок сверхвысокого напряжения и больших импульсных токов: переходные сопротивления в контактных соединениях разрядных цепей и измерительных средств должны быть минимизированы путем применения в них дополнительных проводящих уплотнений и жесткого закрепления.

Рисунок 8 – Осциллограмма импульса тока в разрядной цепи генератора ГИНТ-4/1 при электрическом пробое воздушного промежутка длиной 3 м ($U_3 = \pm 60 \text{ kB}$; $U_B = 1920 \text{ kB}$; $I_{m1} = 62,2 \text{ kA}$; $t_{m1} = 4,1 \text{ мкс}$; период колебаний большого импульсного тока разряда $T_{\Gamma} = 21 \text{ мкс}$; масштаб по вертикали – 2 В/клетка; масштаб по горизонтали – 10 мкс/клетка)

Представленные выше в разделе 3 данной работы некоторые экспериментальные результаты предварительных испытаний электрической прочности длинномерной воздушной изоляции (длиной до 3 м) позволяют для воздействующих импульсов сверхвысокого напряжения с временами нарастания в единицы (десятки) микросекунд при выборе длины воздушных промежутков в конструкциях генераторов импульсных напряжений (токов) и других устройств ВИТ ориентироваться на рабочий усредненный градиент электрического поля в них не более 500 кВ/м при $l_{II} \le 2$ м и не более 400 кВ/м при $l_{II} \le 3$ м.

Выводы

1. При помощи мегавольтного генератора ГИНТ-4/1 наружной установки, омического делителя напряжения типа ОДН-2, измерительного шунта типа ШК-300 и запоминающих цифровых осциллографов типа Tektronix TDS 1012 выполнены экспериментальные исследования электрической прочности длинных воздушных промежутков (длиной до 3 м) в двухэлектродной системе «стержень-стержень», испытывающих воздействие импульсного сверхвысокого напряжения микросекундного временного диапазона.

2. Для воздушных промежутков длиной до 2 м в выбранной конструкции двухэлектродной системы «стержень–стержень» и временах нарастания воздействующих на нее импульсов сверхвысокого напряжения в единицы и десятки микросекунд 50 %-ное разрядное напряжение приближенно составляет около 1180 кВ, а для воздушных промежутков длиной до 3 м – около 1340 кВ.

3. Пробивной усредненный градиент электрического поля для воздушных промежутков длиной до 2 м в исследуемой двухэлектродной системе «стержень–стержень» при указанных импульсах воздействующего на нее напряжения ориентировочно составляет примерно 590 кВ/м, а для воздушных промежутков длиной до 3 м – примерно 447 кВ/м.

4. При длинах воздушных промежутков в конструкциях ВИТ с указанными импульсами сверхвысокого напряжения до 2 м рабочий усредненный градиент электрического поля в них может составлять не более 500 кВ/м, а для воздушных промежутков длиной до 3 м – не более 400 кВ/м.

5. Подобные исследования целесообразно провести для более широкого временного диапазона изменения импульсного напряжения, иных конструкций двухэлектродной системы и бо́льших длин воздушных промежутков.

Список литературы: 1. Техника высоких напряжений / Под общей ред. Г.С. Кучинского. - СПб: Издво ПЭИПК, 1998. - 700 с. 2. Кужекин И.П. Испытательные установки и измерения на высоком напряжении. - М.: Энергия, 1980.- 136 с. 3. Баранов М.И., Колиушко Г.М., Кравченко В.И. и др. Комплекс высоковольтного испытательного электрофизического оборудования экспериментальной базы НИПКИ «Молния» НТУ «ХПИ» // Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Тематичний випуск: Електроенергетика і перетворююча техніка. - Харків: НТУ «ХПІ», 2004. – № 4. – С. 3-13. 4. Пекарь И.Р., Фертик С.М. Мощная высоковольтная электроразрядная установка на 4 МВ и 1 МДж // Сборник докл. межвуз. конф.: «Электрофизическая аппаратура и электрическая изоляция». - М.: Энергия, 1970. - С. 22-26. 5. Баранов М.И., Бочаров В.А., Игнатенко Н.Н. и др. Мощные генераторы импульсных напряжений и токов предельных параметров для тестирования силового электроэнергетического оборудования // Електротехніка і електромеханіка. - 2003. - № 2. - С. 75-80. 6. Баранов М.И., Колиушко Г.М., Кравченко В.И. и др. Генератор тока искусственной молнии для натурных испытаний технических объектов // Приборы и техника эксперимента. - 2008. - № 3. - С. 81-85. 7. Межгосударственный стандарт ГОСТ 1516.2-97. Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции. - Минск: Изд-во стандартов, 1997. - 31 с. 8. ГОСТ 17512-82. Электрооборудование и электроустановки на напряжение 3 кВ и выше. Методы измерения при испытаниях высоким напряжением. -М.: Изд-во стандартов, 1982. – 32 с. 9. Баранов М.И., Колиушко Г.М., Лысенко В.О. Экспериментальное определение активного сопротивления и электропроводности сильноточного плазменного канала в разрядной цепи генератора импульсной компоненты тока искусственной молнии // Електротехніка і електромеханіка. - 2011. - № 3. - С. 51-55.

Поступила в редколлегию 27.10.2011